Heterogeneous Trust with Probabilistic Witnesses

Liron Schiff¹

Joint work with:

Veronika Anikina², João Paulo Bezerra^{3,4}, Petr Kuznetsov^{3,4} and Stefan Schmid⁵

Trusting Randomness with Money

Gambling

BEGIN RSA PRIVAT IIIEPQIBAAKCAQEAY3OL VB++Y2+8+P3zgDJyD8c NRorZcTgdHnB/my76zF (TKt0HodYM9wVupLcfFj0 WrkHhccG7+E1bol0Llc (oY218gc/T8xETXtIljE	BANK OF AMERICA	<pre>(jIsHTxv+jaPnj ligVF6GUM+a//B :CZIUTqR9zfsR2 /v+RWBIi7Lsi6m iJyU3xIMhYco+n iUAAVOpCyLeq+7 -kB5m3TLQpDVRd</pre>
Z6wfcpqtMwgiPBAdD49		3+ip8nHVk6yL7+
06JsSW+vFLoYQhhiQYRt (lInxAbOPbKsxbPj+Y5n	User ID	azaZMa2t9e70w6 JOBENgSNFWVbBd
hwikgLa8C1×xNtPOTfC ×rzokECgYEAz/xMZ1×F (SsLkYwRCNIyxyxsN2tt	Password	SUrqThLzTF3rQt SFmmJGgGjDZLW6 iybwSOC0wCN26E
BQwmDE6NyxXgLs9/bUL s9PIP38fEjNXod7voYs 7ppNJK098PKM+ewfQAs	Save User ID	IÓEKUCGYEA+mtS 1/m6w6xtOHaNNV FBVHIXeYDP7PsQ
p2qhGYUbxS11/E50z2v V8FuiIFaJ1pUHbyQhxs	Log In	2HXCZCG+YZKGCO KaKLZ+97WMpN7Z
IIbM2JCDRothCDc2SULt	Forgot ID/Password?	iNrfHmw6/TXJUq
IGTd2s/oYK/v/ID2DgBa S2iTtskYoHLWOXb0++K4	Security & Help Enroll	IRJCZCbbT9u1bt /IdoKTBkmgWCoT
iteNaGUCgYEAjvO1wKdj vyOa9OIXouZwnuQMQz84	Open an Account	knAq2sXSūTXeD (soC/Ay2Se1JGg
(1010/amLOUetNM/ACSc	TOT IT REALED AND TARE TO THE REALED TO THE	

---END RSA PRIVATE KEY----

Security

Time

How to prevent double spendings?

- Shared view of everyone's balance
 - Centralized DB (bank)
 - Replicated state (e.g., blockchain)
- Consistent views of everyone's balance
 - Reliable broadcast [Guerraoui et al. 2019]

Reliable Broadcast (multi-instance)

Reliable Broadcast (multi-instance)

- Integrity
 - If non-faulty Q delivers m with non-faulty origin P then P called broadcast(m).
- Validity
 - If non-faulty P broadcast m, then all non-faulty will deliver m
- Consistency
 - If non-faulty Q and R deliver m=(P,t,v) and m`=(P,t,v`) then v=v` (even if P is faulty)
- Totality
 - If non-faulty Q receives m then any non-faulty R will receive m

- Available when #faulty < n/3
- Message complexity $\Theta(n^2)$ [Dolev et al 1985] [Bracha 1987]

Bracha G. Asynchronous Byzantine Agreement Protocols, INFORMATION AND COMPUTATION 75, 130-143 (1987)

- Available when #faulty < n/3
- Message complexity $\Theta(n^2)$ [Dolev et al 1985] [Bracha 1987]
- Can prevent double spending!
 - by forcing per sender ordering

$$m = (P_2, 1, P_2 \xrightarrow{20} P_3)$$
$$m' = (P_2, 1, P_2 \xrightarrow{20} P_4)$$

- Available when #faulty < n/3
- Message complexity $\Theta(n^2)$ [Dolev et al 1985] [Bracha 1987]
- Can prevent double spending!
 - by forcing per sender ordering
 - Only one message per process and index will be received

$$m = (P_2, 1, P_2 \xrightarrow{20} P_3)$$
$$m' = (P_2, 1, P_2 \xrightarrow{20} P_4)$$

- Available when #faulty < n/3
- Message complexity $\Theta(n^2)$
- Can prevent double spending!

Reliable broadcast with trusted witness sets (quorums)

- Each message is sent and/or verified by the witness set
- Message complexity: $\Theta(w \cdot n)$ where w is the witness set size.

This work (extended protocol)

Reliable broadcast with trusted witness sets (quorums)

- Each message is sent and/or verified by the witness set
- Message complexity: $\Theta(w \cdot n)$ where w is the witness set size.
- Challenges:
 - How to select such witness sets?
 - How to prevent an adaptive attacker from compromising them?

Idea: select a random set per message/transaction

Random selection of witness sets

- Benefits
 - The witness set has similar ratio of faulty members like in the network W.H.P
 - Unpredictable and therefore hard to compromise in advance
- Existing approaches
 - MPC of shared randomness high complexity
 - Use previous blockchain block hash [Algorand] requires synchronous blocks
- Goal: Random selection for high-rate transactions

Our approach: locality sensitive history hash

- Independently computed by each process (no communication latency)
- Similar histories are hashed to similar values (weak synchronization)
- Similar hash values results with similar (heterogenous) sets

Our approach: locality sensitive history hash

Challenges

- Histories my differ by some recent messages and the total ordering
- Hash should be hard to predict
- Quickly converge to uniform (compared to attack time)
- Solution
 - History is hashed to a vector \mathbf{v} in a cyclic D dimensional space \mathbb{Z}_r^D (torus)
 - Each message is hashed to dimension $d \in [D]$ and a direction $t \in \{-1, 1\}$, and used to update v[d] += t
 - Peer IDs are also hashed to the same hash space
 - Peers are selected based on proximity to the history hash (at a given time)

Random walk in a torus

- History advances like a random walk in a torus.
- Peers are uniformly scattered.

Random walk in a torus

- History advances like a random walk in a torus.
- Peers are uniformly scattered.
- Extension:

History hash is used to derive independent per peer and transaction random walks

Technical Report: "Dynamic Probabilistic Reliable Broadcast" [arxiv.org/abs/2306.04221]

Can we trust these witness sets?

- Reliable broadcast requirements are provided W.H.P
- Probability that a witness set is comprised is very low $k-1 \neq 0$

•
$$\Pr(faulty(W) < k) = \sum_{i=0}^{J} {J \choose i} p^i (1-p)^{f-i}$$

- Time till many compromised peers are selected together is very large
 - (Simulation + approximation)

Can we use external sources of trust?

- Adaptive witness set size based on message issuer (float trust)
 - Trust can be defined by $\{p_i\}_{i \in [n]}$
 - where p_i = probability that i will try double spending
 - We can keep a constant failure probability
 - $p_{fail} = p_i \cdot Pr(\#faulty(W_i) > k)$
 - Faster transactions within trust cliques
- Extending witnesses with trusted peers (Boolean trust)
 - Considering
 - logarithmic size witness set ($w = c \ln n$)
 - Constant trust ratio T (each peer trusts T \cdot *n* peers)
 - Each peer uses the random set but if needed it also uses an extra (closest) trusted peer
 - Most of the times the random set can be trusted as is (constant number of extra peers)
 - Whenever $T \ge 1 e^{-\frac{1}{c}}$, for example, if c = 1 and $T > \frac{2}{3}$ or c = 10 and $T > \frac{1}{10}$

Summary

- Crypto currency using reliable broadcast
- Low-cost reliable broadcast using trusted witness sets
- Random selection of witnesses using local sensitive hashing of history
- Using external sources of trust

Thank you

In memory of Israeli men, women and children slaughtered by Hamas and wishing for the release of all those abducted and still held in Gaza.