Heterogeneous, Efficient Auditing of
Replicated State Machines

Workshop on Heterogeneous Trust in Distributed Systems

Geoff Ramseyer, David Mazieres
Stanford University

October 26,2023

1/25

Digital Cash is on the Horizon

... but what does infrastructure for society-scale deployment need?

February 3, 2022

20204 104 9H

Project Hamilton Phase S
Executive Summary PRIFTT S LBRIZMT B BABTORY BHF8

(B B

Federal Reserve Bank Of BOSton and 15 W 1 B O Rl A iR 2 A IS, WA DRk~ R TF O 4 et

.) HATWD, HHFIEHOAL - FORSRLEBEXD L. 4%, THRM

Massachusetts Institute of Technology Digital | 7w sniss: entra sark digial curreney : 57 reBDC t2

S KT HHRO=— XP/MTHE D TN L H 5, AAGRIT T, BNGLAT

3 I “"0 CBDC&%ITT 5 MBIV, Wi AT ARKOLIE: & Stk

T | avout | wedia | Research & publcations AR DD B | A OB 2RI M HIETE B LD Lo

Dl L TR ZEBMETHH L ELTVA, 29 LERBMOLE, 4

e, AR A STV EROF A 2408 L T-RFHRCBDC)
1Z2WT, AASYTOIRY MASigt k7T L & Lz,

A digital euro 1. CBDCEMAT HWAINIHhBMIEE &N
CBDCICH, [FR—At—ABCBDC) & [—RFMMCBDC) ©
@ h— 2ODBIENRH B A, BREIBHT—BFMECBDCEHATHHA

The digital euro would be like euro banknotes, bu | (SWHF SN HBIERBH L LTIX, UTOLS RHOREX LMD,
Qur work aims 1o ensure that in

iﬁ—,\i@{i}zﬁ &?A Em electronic form of money, issued by the Eurosystem (the ECB and the national the dizi L.

s central banks of the euro area), and would be accessible to all citizens and firms. e digital age citizens and firms
continue to have access to the
safest form of money, central
bank monev

BFARTRGE, . 58, BFART
AROERRE, RRREBEFART, ROETFHHEREFART (LK) A

A digital euro would not replace cash, but rather complement it. A digital euro
would give people an additional choice about how to pay and make it easier to

2/25

What does Digital Cash Need?

* Extensibility
- Arbitrary, unknown use-cases and applications

* Core Infrastructure Scalablility
- Infrastructure should run arbitrarily fast

* End-User Scalability
- Heterogeneous users with varying requirements and constraints

3/25

Where do existing solutions stand today?

e / Adaptability

- Smart contracts, custom code in
transactions

Block-STM
—4-— 2 Accounts
—+— 10° Accounts
—4— 10° Accounts
—-p— 107 Accounts

d

=
o
=1
=}
=}
=]

(=
=
=]
=}
=}
S

00000

o

« ¥ Core Infrastructure Scalability
- Conventional wisdom says Layer-1

MW
(= - =]
= = T =
(= - =]
2 2 99
(= = N =)

Payment Transactions/Secon

scalability is impossible e _,;_________,A;
o ¥ End-User Scalability oo {fk
. . 0 =4 4 < <
- anjcqwaltrust assumptlo_ns or 18 16 61 06
significant hardware requirements for Number of Threads
end users

State of the art smart contract execution
engine

4/25

Where do existing solutions stand today?

e / Adaptability

- Smart contracts, custom code in
transactions

=

00000

(=)
=
=]
=}
=}
S

00000

o

e / Core Infrastructure Scalability

- Near-linear, Layer-1 computational
scalability

e / End-User Scalability, Auditability
- End-user costs proportional to

B
o S o
S o oS
S S B
2 o o
S S S

100000

Payment Transactions/Second

—b— 107 Accounts

Groundhog
—4-— 2 Accounts
—<— 10° Accounts
—4— 10 Accounts / »

"__,__———-:i
—
0 Fe—q < < q
48 16 32 64 96
Number of Threads

individual usage and requirements

Today’s Talk: Near-linear core scalability,
and auditing n transactions costs O(n)

4/25

Architecture Overview
ZA

* Many replicas maintain whole copies of a shared ledger
* End-users send transactions to replicas

5/25

Architecture Overview

o
BA
 —
—d
—
[}
BA

—]

 —

—

* Many replicas maintain whole copies of a shared ledger
* End-users send transactions to replicas

5/25

Architecture Overview

o
BA
 —
—d
—
[}
BA

—]

 —

—

* Many replicas maintain whole copies of a shared ledger
* End-users send transactions to replicas

5/25

Architecture Overview

(000

[

* Many replicas maintain whole copies of a shared ledger
* End-users send transactions to replicas

5/25

Architecture Overview

000 g 000 g

* Many possible architectures (rollups, decentralized networks)
- Agnostic to consensus protocol
* Might even be only one replica allowed (e.g. in a CBDC)

* Maybe access controls on data o5

How Do End-Users Interact With Today’s Designs?

* Option 1: Run a Replica
- % Expensive, individual’s costs increase with number of total users!

e Option 2: Trust (a majority of) network
- % Requires a nontrivial trust assumption, may not always be satisfied
- ¥ What if there is only one replica?

* Option 3: Audit a replica (and produce fraud proofs)
- Used in optimistic rollups
- Does not require trust in any full node
- % Costs are equal to running a full node.
- % Requires entire transaction history.
- How can we fix these problems?

7/25

* Key Idea: Unordered Blocks of Commutative Transactions
- Everything depends on choosing the right abstractions

e Part 1: Commutative Transaction Semantics

* Part 2: Heterogeneous, Efficient Partial Audits

8/25

Key Idea: Commutative Transaction Semantics

Most Systems:
A replicated state machine deterministically
executes (blocks of) transactions in a total order.
9/25

Key Idea: Commutative Transaction Semantics

Most Systems:

A replicated state machine deterministically
executes (blocks of) transactions in a total order.

9/25

Key Idea: Commutative Transaction Semantics

Our systems:

|
!

A replicated state machine deterministically
executes blocks of unordered commutative
transactions.

10/25

Part 1: Linearly-Scalable Smart Contract Engine

How can commutative transactions do useful work?

0 Unordered batches of commutative
transactions

1 Read from snapshots
- Key-value store, typed values

2 Write through typed state changes PR A

3 Maintain application constraints on data
- E.g., Account balances must be nonnegative

11/25

Example: Payments
[Read A’s Balance ($25)] [Read B’s Balance ($20)]

\/—Y\J

Send $10 from A to B

1. Read A’s Balance ($25)
. Subtract 25-10=15
. Write A’s Balance ($15)
. Read B’s Balance ($20)
. Add 20+10=30
. Write B’s Balance ($30)

———

[Write A’s Balance ($15)] [Write B’s Balance ($30)]

o U A W N

12/25

Read C’s Balance ($50)

Read A’s Balance ($25)

Read B’s Balance ($20)

i,

2.
3
4.
5.
6.

Send $20 from A to C

Read A’s Balance ($25)
Subtract 25-20=5
Write A’s Balance ($5)
Read C’s Balance ($50)
Add 50+20=70

Write C’s Balance ($70)

i,

o s W N

Send $10 fromAto B

Read A’s Balance ($25)

. Subtract 25-10=15

. Write A’s Balance ($15)
. Read B’s Balance ($20)
. Add 20+10=30

. Write B’s Balance ($30)

Write C’s Balance ($70)

Write B’s Balance ($30)

What if two transactions write to the same location?

13/25

2: Typed State Changes

Read C’s Balance ($50) Read A’s Balance ($25) Read B’s Balance ($20)

Send $20 fromAto C Send $10 fromAto B

1. Read A’s Balance ($25) 1. Read A’s Balance ($25)
. Subtract 25-20=5
. Write A’s Balance ($5)
. Read C’s Balance ($50)
. Add 50+20=70
. Write C’s Balance ($70)

. Subtract 25-10=15

. Write A’s Balance ($15)
. Read B’s Balance ($20)
. Add 20+10=30

. Write B’s Balance ($30)

o A W N
[S N

[Subtract $10 from A’s Balance] Add $10 to B’s Balance

[Subtract $20 from A’s Balance]

Add $20 to C’s Balance

4

' Write C’s Balance ($70) l Write A’s Balance (-$5) Write B’s Balance ($30)

14/25

3: Constraints

Read C’s Balance ($50) Read A’s Balance ($25) Read B’s Balance ($20)

Send $20 fromAto C Send $10 fromAto B
1. Read A’s Balance ($25) 1. Read A’s Balance ($25)
2. Subtract 25-20=5 2. Subtract 25-10=15
3. Write A’s Balance ($5) 3. Write A’s Balance ($15)
4. Read C’s Balance ($50) 4. Read B’s Balance ($20)
5. Add 50+20=70 5. Add 20+10=30
6. Write C’s Balance ($70) 6. Write B’s Balance ($30)

Add $20 to C’s Balance Add $10 to B’s Balance

[Subtract $10 from A’s Balance]
[Subtract $20 from A’s Balance]

' Write C’s Balance ($70) l * Write B’s Balance ($30)

What if a balance becomes negative?

15/25

Read A’s Balance ($25) Read B’s Balance ($20)

Send $10 fromAto B

1. Read A’s Balance ($25)
. Subtract 25-10=15
. Write A’s Balance ($15)
. Read B’s Balance ($20)
. Add 20+10=30

o A W N

. Write B’s Balance ($30)

Add $10 to B’s Balance

[Subtract $10 from A’s Balance]

' Write A’s Balance ($15) l ' Write B’s Balance ($30) l

Preempt constraint conflicts when assembling blocks
Efficiently implementable via only hardware atomics

16/25

One Minimal Set of Value Types

* Bytestrings (Read/Write)
- Ex: Configuration data

* Nonnegative integers (Add/Subtract)
- Ex: Account balances, linear constraints

* Ordered Sets (Insert/Clear)
- Ex: Replay cache, set of auction bids, set of messages

17/25

Groundhog [RM, Working Paper]

Implement real applications with minimal API changes
- Tokens, Auctions, Money-Markets

Implement a sequencing gadget when necessary (asynchronous
message-passing)

- Used in production today: Near, Zilliga, CosmWasm,...

Applications can choose their own level of parallelism

- Only acquire necessary locks, not one global lock
> Nonnegative integer primitive directly implements a semaphore

- Fast applications run quickly, slow ones run slowly
Implementation in ~ 20,000 LOC C++

- https://github.com/scslab/smart-contract-scalability

18/25

https://github.com/scslab/smart-contract-scalability

Payments Benchmark

700000 Groundhog

—4— 2 Accounts

—w— 10° Accounts

—4_ 10° Accounts >
200000 407 Accounts /

300000

[=2]
o
o
o]
o
o

iy
=
o
o
o
o

Payment Transactions/Second

200000 A -
o : ’__._____________I;
100000 N
0 éﬁ 4 4 4 4
48 16 32 64 96

Number of Threads

Throughput (mostly) independent of contention on individual account balances
19/25

Part 2: Efficient Partial Auditing

How does commutativity enable efficient, partial audits?
e Assumptions:
- User has trusted block headers, with commitments to authenticated data structures
- User can query openings for these commitments
e What’sin a block header?

- Commitment to ledger state
- Commitment to set of transactions

- Commitment to an index of modifications to ledger state
> List of modifications on each key

20/25

Auditing a Single Transaction

How can we audit a single transaction?
[Read A’s Balance ($25)] [Read B’s Balance ($20)]

Send $10 from A to B
1. Read A’s Balance ($25)
2. Subtract 25-10=15
. Write A’s Balance ($15)
. Read B’s Balance ($20)
. Add 20+10=30
. Write B’s Balance ($30)

=2 B)

[Subtract $10 from A’s Balance] [Add $10 to B’s Balance]

[Write A’s Balance ($15)] [Write B’s Balance ($30)]

21/25

Why is this efficient?

* Every transaction in a block reads from the same snapshot
* Writes to ledger state are indexed in the block header
e Compare with traditional, sequential model

22/25

Example Audits

* Smart contract developer audits all keys (and the transactions that touch them)
in their smart contract

* User audits their own account balance, over some time period
- Cost proportional to number of transactions and length of the time period

e Bank audits all transactions in its tokenized deposits
- Cost proportional only to number of depositors and their activity

23/25

Related Work

» Shards, rollups divide global state into pieces, allowing audits of individual
shards.

- Coarse granularity in audit requirements, usually reduce resources by only a constant
factor

- Cross-shard communication, bridge mechanisms also require audit

* Cross-shard communication, bridge mechanisms also require audit

24/25

Conclusion

The right abstractions enable layer-1 decentralized infrastructure that is
extensible, computationally scalable, and efficiently auditable

* Transaction commutativity enables:

- Parallelizable implementation: near-linear scalability
- Efficient audits: each user pays only for their own usage.

Thank you!

25/25

