
Heterogeneous, E�icient Auditing of
Replicated State Machines

Workshop on Heterogeneous Trust in Distributed Systems

Geo� Ramseyer, David Mazières

Stanford University

October 26, 2023

1 / 25

Digital Cash is on the Horizon...
... but what does infrastructure for society-scale deployment need?

2 / 25

What does Digital Cash Need?

• Extensibility
- Arbitrary, unknown use-cases and applications

• Core Infrastructure Scalablility
- Infrastructure should run arbitrarily fast

• End-User Scalability
- Heterogeneous users with varying requirements and constraints

3 / 25

Where do existing solutions stand today?

• X Adaptability
- Smart contracts, custom code in

transactions
• $ Core Infrastructure Scalability

- Conventional wisdom says Layer-1
scalability is impossible

• $ End-User Scalability
- Nontrivial trust assumptions or

significant hardware requirements for
end users State of the art smart contract execution

engine

4 / 25

Where do existing solutions stand today?

• X Adaptability
- Smart contracts, custom code in

transactions
• X Core Infrastructure Scalability

- Near-linear, Layer-1 computational
scalability

• X End-User Scalability, Auditability
- End-user costs proportional to

individual usage and requirements

Today’s Talk: Near-linear core scalability,
and auditing n transactions costs Õ(n)

4 / 25

Architecture Overview

icon credit: flaticon.com

• Many replicas maintain whole copies of a shared ledger
• End-users send transactions to replicas

5 / 25

Architecture Overview

icon credit: flaticon.com

• Many replicas maintain whole copies of a shared ledger
• End-users send transactions to replicas

5 / 25

Architecture Overview

New Transaction

icon credit: flaticon.com

• Many replicas maintain whole copies of a shared ledger
• End-users send transactions to replicas

5 / 25

Architecture Overview

icon credit: flaticon.com

• Many replicas maintain whole copies of a shared ledger
• End-users send transactions to replicas

5 / 25

Architecture Overview

• Many possible architectures (rollups, decentralized networks)
- Agnostic to consensus protocol

• Might even be only one replica allowed (e.g. in a CBDC)
• Maybe access controls on data

6 / 25

How Do End-Users Interact With Today’s Designs?

• Option 1: Run a Replica
- $ Expensive, individual’s costs increase with number of total users!

• Option 2: Trust (a majority of) network
- $ Requires a nontrivial trust assumption, may not always be satisfied
- $What if there is only one replica?

• Option 3: Audit a replica (and produce fraud proofs)
- Used in optimistic rollups
- X Does not require trust in any full node
- $ Costs are equal to running a full node.
- $ Requires entire transaction history.
- How can we fix these problems?

7 / 25

Roadmap

• Key Idea: Unordered Blocks of Commutative Transactions
- Everything depends on choosing the right abstractions

• Part 1: Commutative Transaction Semantics
• Part 2: Heterogeneous, E�icient Partial Audits

8 / 25

Key Idea: Commutative Transaction Semantics

Most Systems:

A replicated state machine deterministically
executes (blocks of) transactions in a total order.

9 / 25

Key Idea: Commutative Transaction Semantics

Most Systems:

A replicated state machine deterministically
executes (blocks of) transactions in a total order.

9 / 25

Key Idea: Commutative Transaction Semantics

Our systems:

A replicated state machine deterministically
executes blocks of unordered commutative

transactions.

10 / 25

Part 1: Linearly-Scalable Smart Contract Engine

How can commutative transactions do useful work?

0 Unordered batches of commutative
transactions

1 Read from snapshots
- Key-value store, typed values

2 Write through typed state changes
3 Maintain application constraints on data

- E.g., Account balances must be nonnegative

11 / 25

Example: Payments

Send $10 from A to B
1. Read A’s Balance ($25)
2. Subtract 25-10=15
3. Write A’s Balance ($15)
4. Read B’s Balance ($20)
5. Add 20+10=30
6. Write B’s Balance ($30)

Read A’s Balance ($25) Read B’s Balance ($20)

Write A’s Balance ($15) Write B’s Balance ($30)

12 / 25

1: Reading from a Snapshot

Send $10 from A to B
1. Read A’s Balance ($25)
2. Subtract 25-10=15
3. Write A’s Balance ($15)
4. Read B’s Balance ($20)
5. Add 20+10=30
6. Write B’s Balance ($30)

Read A’s Balance ($25) Read B’s Balance ($20)

Write A’s Balance (???) Write B’s Balance ($30)

Send $20 from A to C
1. Read A’s Balance ($25)
2. Subtract 25-20=5
3. Write A’s Balance ($5)
4. Read C’s Balance ($50)
5. Add 50+20=70
6. Write C’s Balance ($70)

Read C’s Balance ($50)

Write C’s Balance ($70)

What if two transactions write to the same location?

13 / 25

2: Typed State Changes

Send $10 from A to B
1. Read A’s Balance ($25)
2. Subtract 25-10=15
3. Write A’s Balance ($15)
4. Read B’s Balance ($20)
5. Add 20+10=30
6. Write B’s Balance ($30)

Read A’s Balance ($25) Read B’s Balance ($20)

Subtract $10 from A’s Balance

Subtract $20 from A’s Balance

Write A’s Balance (-$5)

Add $10 to B’s Balance

Write B’s Balance ($30)

Send $20 from A to C
1. Read A’s Balance ($25)
2. Subtract 25-20=5
3. Write A’s Balance ($5)
4. Read C’s Balance ($50)
5. Add 50+20=70
6. Write C’s Balance ($70)

Read C’s Balance ($50)

Add $20 to C’s Balance

Write C’s Balance ($70)

14 / 25

3: Constraints

Send $10 from A to B
1. Read A’s Balance ($25)
2. Subtract 25-10=15
3. Write A’s Balance ($15)
4. Read B’s Balance ($20)
5. Add 20+10=30
6. Write B’s Balance ($30)

Read A’s Balance ($25) Read B’s Balance ($20)

Subtract $10 from A’s Balance

Subtract $20 from A’s Balance

Write A’s Balance (-$5)

Add $10 to B’s Balance

Write B’s Balance ($30)

Send $20 from A to C
1. Read A’s Balance ($25)
2. Subtract 25-20=5
3. Write A’s Balance ($5)
4. Read C’s Balance ($50)
5. Add 50+20=70
6. Write C’s Balance ($70)

Read C’s Balance ($50)

Add $20 to C’s Balance

Write C’s Balance ($70)

What if a balance becomes negative?

15 / 25

3: Constraints

Send $10 from A to B
1. Read A’s Balance ($25)
2. Subtract 25-10=15
3. Write A’s Balance ($15)
4. Read B’s Balance ($20)
5. Add 20+10=30
6. Write B’s Balance ($30)

Read A’s Balance ($25) Read B’s Balance ($20)

Subtract $10 from A’s Balance

Subtract $20 from A’s Balance

Write A’s Balance ($15)

Add $10 to B’s Balance

Write B’s Balance ($30)

Send $20 from A to C
1. Read A’s Balance ($25)
2. Subtract 25-20=5
3. Write A’s Balance ($5)
4. Read C’s Balance ($50)
5. Add 50+20=70
6. Write C’s Balance ($70)

Read C’s Balance ($50)

Add $20 to C’s Balance

Write C’s Balance ($70)

Preempt constraint conflicts when assembling blocks
E�iciently implementable via only hardware atomics

16 / 25

One Minimal Set of Value Types

• Bytestrings (Read/Write)
- Ex: Configuration data

• Nonnegative integers (Add/Subtract)
- Ex: Account balances, linear constraints

• Ordered Sets (Insert/Clear)
- Ex: Replay cache, set of auction bids, set of messages

17 / 25

Groundhog [RM, Working Paper]

• Implement real applications with minimal API changes
- Tokens, Auctions, Money-Markets

• Implement a sequencing gadget when necessary (asynchronous
message-passing)

- Used in production today: Near, Zilliqa, CosmWasm,...
• Applications can choose their own level of parallelism

- Only acquire necessary locks, not one global lock
. Nonnegative integer primitive directly implements a semaphore

- Fast applications run quickly, slow ones run slowly
• Implementation in ∼ 20, 000 LOC C++

- https://github.com/scslab/smart-contract-scalability

18 / 25

https://github.com/scslab/smart-contract-scalability

Payments Benchmark

Throughput (mostly) independent of contention on individual account balances
19 / 25

Part 2: E�icient Partial Auditing

How does commutativity enable e�icient, partial audits?
• Assumptions:

- User has trusted block headers, with commitments to authenticated data structures
- User can query openings for these commitments

• What’s in a block header?
- Commitment to ledger state
- Commitment to set of transactions
- Commitment to an index of modifications to ledger state

. List of modifications on each key

20 / 25

Auditing a Single Transaction

How can we audit a single transaction?

Send $10 from A to B

1. Read A’s Balance ($25)

2. Subtract 25-10=15

3. Write A’s Balance ($15)

4. Read B’s Balance ($20)

5. Add 20+10=30

6. Write B’s Balance ($30)

Read A’s Balance ($25) Read B’s Balance ($20)

Subtract $10 from A’s Balance

Write A’s Balance ($15)

Add $10 to B’s Balance

Write B’s Balance ($30)

21 / 25

Why is this e�icient?

• Every transaction in a block reads from the same snapshot
• Writes to ledger state are indexed in the block header
• Compare with traditional, sequential model

22 / 25

Example Audits

• Smart contract developer audits all keys (and the transactions that touch them)
in their smart contract

• User audits their own account balance, over some time period
- Cost proportional to number of transactions and length of the time period

• Bank audits all transactions in its tokenized deposits
- Cost proportional only to number of depositors and their activity

23 / 25

Related Work

• Shards, rollups divide global state into pieces, allowing audits of individual
shards.

- Coarse granularity in audit requirements, usually reduce resources by only a constant
factor

- Cross-shard communication, bridge mechanisms also require audit
• Cross-shard communication, bridge mechanisms also require audit

24 / 25

Conclusion

The right abstractions enable layer-1 decentralized infrastructure that is
extensible, computationally scalable, and e�iciently auditable

• Transaction commutativity enables:
- Parallelizable implementation: near-linear scalability
- E�icient audits: each user pays only for their own usage.

Thank you!

25 / 25

