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Digital Cash is on the Horizon

... but what does infrastructure for society-scale deployment need?
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What does Digital Cash Need?

* Extensibility
- Arbitrary, unknown use-cases and applications

* Core Infrastructure Scalablility
- Infrastructure should run arbitrarily fast

* End-User Scalability
- Heterogeneous users with varying requirements and constraints
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Where do existing solutions stand today?

e / Adaptability

- Smart contracts, custom code in
transactions
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Where do existing solutions stand today?

e / Adaptability

- Smart contracts, custom code in
transactions
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e / Core Infrastructure Scalability

- Near-linear, Layer-1 computational
scalability

e / End-User Scalability, Auditability
- End-user costs proportional to
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Today’s Talk: Near-linear core scalability,
and auditing n transactions costs O(n)
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Architecture Overview
ZA

* Many replicas maintain whole copies of a shared ledger
* End-users send transactions to replicas
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Architecture Overview

000 g 000 g

* Many possible architectures (rollups, decentralized networks)
- Agnostic to consensus protocol
* Might even be only one replica allowed (e.g. in a CBDC)

* Maybe access controls on data o5



How Do End-Users Interact With Today’s Designs?

* Option 1: Run a Replica
- % Expensive, individual’s costs increase with number of total users!

e Option 2: Trust (a majority of) network
- % Requires a nontrivial trust assumption, may not always be satisfied
- ¥ What if there is only one replica?

* Option 3: Audit a replica (and produce fraud proofs)
- Used in optimistic rollups
- Does not require trust in any full node
- % Costs are equal to running a full node.
- % Requires entire transaction history.
- How can we fix these problems?
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* Key Idea: Unordered Blocks of Commutative Transactions
- Everything depends on choosing the right abstractions

e Part 1: Commutative Transaction Semantics

* Part 2: Heterogeneous, Efficient Partial Audits
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Key Idea: Commutative Transaction Semantics

Most Systems:
A replicated state machine deterministically
executes (blocks of) transactions in a total order.
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Key Idea: Commutative Transaction Semantics

Our systems:

|
!

A replicated state machine deterministically
executes blocks of unordered commutative
transactions.
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Part 1: Linearly-Scalable Smart Contract Engine

How can commutative transactions do useful work?

0 Unordered batches of commutative
transactions

1 Read from snapshots
- Key-value store, typed values

2 Write through typed state changes PR A

3 Maintain application constraints on data
- E.g., Account balances must be nonnegative
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Example: Payments
[Read A’s Balance ($25)] [Read B’s Balance ($20)]

\/—Y\J

Send $10 from A to B

1. Read A’s Balance ($25)
. Subtract 25-10=15
. Write A’s Balance ($15)
. Read B’s Balance ($20)
. Add 20+10=30
. Write B’s Balance ($30)

———

[Write A’s Balance ($15)] [Write B’s Balance ($30)]

o U A W N
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Read C’s Balance ($50)

Read A’s Balance ($25)

Read B’s Balance ($20)

i,

2.
3
4.
5.
6.

Send $20 from A to C

Read A’s Balance ($25)
Subtract 25-20=5
Write A’s Balance ($5)
Read C’s Balance ($50)
Add 50+20=70

Write C’s Balance ($70)

i,

o s W N

Send $10 fromAto B

Read A’s Balance ($25)

. Subtract 25-10=15

. Write A’s Balance ($15)
. Read B’s Balance ($20)
. Add 20+10=30

. Write B’s Balance ($30)

Write C’s Balance ($70)

Write B’s Balance ($30)

What if two transactions write to the same location?
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2: Typed State Changes

Read C’s Balance ($50) Read A’s Balance ($25) Read B’s Balance ($20)

Send $20 fromAto C Send $10 fromAto B

1. Read A’s Balance ($25) 1. Read A’s Balance ($25)
. Subtract 25-20=5
. Write A’s Balance ($5)
. Read C’s Balance ($50)
. Add 50+20=70
. Write C’s Balance ($70)

. Subtract 25-10=15

. Write A’s Balance ($15)
. Read B’s Balance ($20)
. Add 20+10=30

. Write B’s Balance ($30)

o A W N
[ S N

[Subtract $10 from A’s Balance] Add $10 to B’s Balance

[Subtract $20 from A’s Balance]

Add $20 to C’s Balance

4

' Write C’s Balance ($70) l Write A’s Balance (-$5) Write B’s Balance ($30)
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3: Constraints

Read C’s Balance ($50) Read A’s Balance ($25) Read B’s Balance ($20)

Send $20 fromAto C Send $10 fromAto B
1. Read A’s Balance ($25) 1. Read A’s Balance ($25)
2. Subtract 25-20=5 2. Subtract 25-10=15
3. Write A’s Balance ($5) 3. Write A’s Balance ($15)
4. Read C’s Balance ($50) 4. Read B’s Balance ($20)
5. Add 50+20=70 5. Add 20+10=30
6. Write C’s Balance ($70) 6. Write B’s Balance ($30)

Add $20 to C’s Balance Add $10 to B’s Balance

[Subtract $10 from A’s Balance]
[Subtract $20 from A’s Balance]

' Write C’s Balance ($70) l * Write B’s Balance ($30)

What if a balance becomes negative?
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Read A’s Balance ($25) Read B’s Balance ($20)

Send $10 fromAto B

1. Read A’s Balance ($25)
. Subtract 25-10=15
. Write A’s Balance ($15)
. Read B’s Balance ($20)
. Add 20+10=30

o A W N

. Write B’s Balance ($30)

Add $10 to B’s Balance

[Subtract $10 from A’s Balance]

' Write A’s Balance ($15) l ' Write B’s Balance ($30) l

Preempt constraint conflicts when assembling blocks
Efficiently implementable via only hardware atomics
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One Minimal Set of Value Types

* Bytestrings (Read/Write)
- Ex: Configuration data

* Nonnegative integers (Add/Subtract)
- Ex: Account balances, linear constraints

* Ordered Sets (Insert/Clear)
- Ex: Replay cache, set of auction bids, set of messages
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Groundhog [RM, Working Paper]

Implement real applications with minimal API changes
- Tokens, Auctions, Money-Markets

Implement a sequencing gadget when necessary (asynchronous
message-passing)

- Used in production today: Near, Zilliga, CosmWasm,...

Applications can choose their own level of parallelism

- Only acquire necessary locks, not one global lock
> Nonnegative integer primitive directly implements a semaphore

- Fast applications run quickly, slow ones run slowly
Implementation in ~ 20,000 LOC C++

- https://github.com/scslab/smart-contract-scalability
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https://github.com/scslab/smart-contract-scalability

Payments Benchmark
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Part 2: Efficient Partial Auditing

How does commutativity enable efficient, partial audits?
e Assumptions:
- User has trusted block headers, with commitments to authenticated data structures
- User can query openings for these commitments
e What’sin a block header?

- Commitment to ledger state
- Commitment to set of transactions

- Commitment to an index of modifications to ledger state
> List of modifications on each key
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Auditing a Single Transaction

How can we audit a single transaction?
[Read A’s Balance ($25)] [Read B’s Balance ($20)]

Send $10 from A to B
1. Read A’s Balance ($25)
2. Subtract 25-10=15
. Write A’s Balance ($15)
. Read B’s Balance ($20)
. Add 20+10=30
. Write B’s Balance ($30)

=2 B )

[Subtract $10 from A’s Balance] [Add $10 to B’s Balance]

[Write A’s Balance ($15)] [Write B’s Balance ($30)]
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Why is this efficient?

* Every transaction in a block reads from the same snapshot
* Writes to ledger state are indexed in the block header
e Compare with traditional, sequential model
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Example Audits

* Smart contract developer audits all keys (and the transactions that touch them)
in their smart contract

* User audits their own account balance, over some time period
- Cost proportional to number of transactions and length of the time period

e Bank audits all transactions in its tokenized deposits
- Cost proportional only to number of depositors and their activity
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Related Work

» Shards, rollups divide global state into pieces, allowing audits of individual
shards.

- Coarse granularity in audit requirements, usually reduce resources by only a constant
factor

- Cross-shard communication, bridge mechanisms also require audit

* Cross-shard communication, bridge mechanisms also require audit
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Conclusion

The right abstractions enable layer-1 decentralized infrastructure that is
extensible, computationally scalable, and efficiently auditable

* Transaction commutativity enables:

- Parallelizable implementation: near-linear scalability
- Efficient audits: each user pays only for their own usage.

Thank you!
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